"Anticancer drug development with ADP-ribose regulatory platform"

The innovative concept of our technology

Anticancer drug development focusing on inhibitor type

Inhibitors targeting known cancer cell survival pathways

PARP inhibitors approved by USFDA or EMA

Many inhibitors under development

Selected projects targeting synthetic lethality*				
Project	Company	Mechanism	Trial	Note
TNG908	Tango Therapeutics	PRMT5 inhibitor	Ph1/2 in solid tumours with MTAP deletion	Initial data due H1 2023
MRTX1719	Mirati	PRMT5 inhibitor	Ph1/2 in solid tumours with MTAP deletion	Ends Jan 2024
SKL27969	SK Biopharmaceuticals	PRMT1 inhibitor	Ph1/2 solid tumours	Ends Sep 2024
AMG 193	Amgen	PRMT5 inhibitor	Ph1 in solid tumours with MTAP deletion	Separate clinical trial collaboration with Ideaya's IDE397
AG-270	Servier (ex Agios)	Mat2A inhibitor	Ph1 in tumours with MTAP deletion	Servier bought Agios's oncology business in 2020
IDE397	Ideaya	Mat2A inhibitor	Ph1 in solid tumours with MTAP deletion	"ctDNA molecular responses" claimed; GSK declined option
JNJ- 64619178	Johnson & Johnson	PRMT5 inhibitor	Ph1 in various tumours	Was due to end mid-2022
PRT543	Prelude Therapeutics	PRMT5 inhibitor	Ph1 in various tumours	1 CR in 26 evaluable solid tumour & lymphoma subjects
PRT811	Prelude Therapeutics	PRMT5 inhibitor	Ph1 in various tumours	0 responses in 19 solid tumour (incl glioma) subjects
RP-6306	Repare Therapeutics	PKMYT1 inhibitor	Three ph1 studies	Incl combo with RP-3500 (ATR inhibitor licensed to Roche)
GSK3326595	GSK/Epizyme	PRMT5 inhibitor	Discontinued in ph1	Deal canned by GSK, Epizyme bought by Ipsen
GSK3368715	GSK/Epizyme	PRMT1 inhibitor	Discontinued in ph1	Deal canned by GSK, Epizyme bought by Ipsen
PF- 06939999	Pfizer	PRMT5 inhibitor	Discontinued in ph1	"Strategic decision within the Pfizer oncology portfolio"
JBI-778	Jubilant Pharmova	PRMT5 inhibitor	NA	IND cleared Aug 2022
TNG462	Tango Therapeutics	PRMT5 inhibitor	NA	IND filing due H1 2023
ISM020	Insilico Medicine	Mat2A inhibitor	NA	IND filing due 2023
AGX323	Angex Pharmaceutical	PRMT5 inhibitor	NA	AACR data in 2021
AT101/ AT201	Argonaut Therapeutics	PRMT5 inhibitor	NA	Several preclinical leads

Note: *for a list of Wee1 and ATR inhibitors see <u>recent Evaluate Vantage coverage</u>. Source: company statements, Evaluate Pharma & clinicaltrials.gov.

Is suppression the only answer?

Common problems of conventional drugs: Adverse effect, low tolerability, and resistance to therapies

PearlsInMires wonders why suppression is the only way to develop anticancer drug.

An innovative concept for developing anticancer drug

Obviously, there will be a target to induce anticancer effect without suppression.

- Concept: Breaking away from the stereotype of the existing 'inhibitor-types'
- Target: 'Essential factor for cancer cell survival', but 'Unfavorable for cancer cell survival by target expression'
- Development Requirements
 - 1. First-in-class drug inducing cancer cell death by 'Target sustaining'
 - 2. Clear MoA and easy PoC
 - 3. Easy to select optimal indications in clinical

Four categories for development of the ADP-ribose regulatory platform

Category 1: Synthetic lethality intervention by the platform technology

Category 1: Synthetic lethality intervention by the platform technology

ADP-ribose

- DNA damage response
- Epigenetic control
- Cell Signaling
- Regulation of gene expression
- Stress response
- Parthanatos

Category 1: Synthetic lethality intervention (Parthanatos/DNA damage)

Front Neurol . 2021 May 5;12:662034.

Int J Mol Sci . 2017 Aug 5;18(8):1715

🥭 PearlsInMires

ť Category 1: Synthetic lethality intervention by the platform technology

Confidential

1 2 3

5 6

Measurement

4

8 9

2W 3W

4W

9

Category 2: Chromatin-structure modulation by the platform technology

Category 2: Chromatin-structure modulation by the platform technology (8 items secured)

ADP-ribose

- DNA damage response
- Epigenetic control
- Cell Signaling
- Regulation of gene expression
- Stress response
- Parthanatos

Category 2: Chromatin-structure modulation (Epigenetic control)

Nat Rev Drug Discov . 2020 Oct;19(10):711-736.

PearlsInMires

Category 3: Regulation of cell signaling and protein degradation by the platform technology

Category 3: Regulation of cell signaling and protein degradation by the platform technology (19 items secured)

ADP-ribose

- DNA damage response
- Epigenetic control
- Cell Signaling
- Regulation of gene expression
- Stress response
- Parthanatos

Category 3: Regulation of cell signaling and protein degradation

🥐 PearlsInMires

PearlsInMires

Category 3: Regulation of cell signaling and protein degradation by the platform technology (19 items secured)

Ó

PearlsInMires

Category 3: Regulation of cell signaling and protein degradation by the platform technology (19 items secured)

Pearl-105

Ć

Peptide-based Axin1 conservation drug

First-in-class drug Acting directly on the target in cancer cells

Competitiveness of the platform technology

Opportunities to develop in combination with the existing drugs

First-in-class that does not share previously known mechanism of existing drugs. There is high possibility to cooperate with other pharmaceutical companies.

Potential of complimenting or replacing the existing anticancer drugs

Our platform technology can show anticancer effect regardless resistance to existing anticancer drugs

Ó

High possibility of successful phase 1 1

Ť High probability of successful phase 1 clinical trial

High probability of successful phase 1 clinical trial by cancer-specific action.

Key points in a solution

- 1 Since the ADP degrading enzymes expressed in normal cells, inhibitory methods may also affect normal cells.
- 2 Since the synthesis of ADP-ribose is highly increased in cancer cells, it is suitable for a cancer-specific target.
- S Inducing anticancer effect in a unique way of increasing ADP-ribose synthesis as a pADP modulator.
- 4 It is possible to be free from unexpected toxicity through cancer-specific action.

4

ARH3: ADP-Ribosylhydrolase 3

High probability of successful phase 1 clinical trial

The drugs are non-toxic to normal cells and healthy mice (non-official GLP toxicity data).

No toxicity was observed.

CCD-18Co (Normal colon fibroblast)

HFDPS (Human normal follicle dermal papilla cells)

HFDPS (Human normal follicle dermal papilla cells)

HFDPS (Human normal follicle dermal papilla cells)

Confidential

Applicable to develop various new formulations by conjugating a novel and/or the existing drugs

PearlsInMires

Keun-Yeong Jeong, Ph.D CEO/CTO Phone. 010-6834-3239 E-mail. dr.j@pearlsinmires.com